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straight boundaries 
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Two related wave problems are considered for a rotating sea of nearly uniform 
depth bounded by a coastline which is nearly straight. The depth changes are 
assumed to be independent of the distance from the coastline. The first problem, 
which is concerned with the origin of Kelvin waves in a coastal wave record, 
deals with a system of plane waves incident on the coastline and giving rise, in 
addition to reflected waves, to a Kelvin wave moving along the coast. Linearized 
theory is used to obtain details of the Kelvin wave for arbitrary perturbations 
in coastline and depth. Results suggest that the depth changes have their 
greatest effect in producing Kelvin waves if the incident wave crests are nearly 
parallel, but not exactly so, to the line of the depth changes. On the other hand 
when the wave crests are parallel to the coast, Kelvin waves are produced only 
by changes in the coastal boundary. In  the second problem a Kelvin waye is 
assumed to be the incident wave. To find the energy propagated away from the 
coastline it is necessary to extend the theory to second order in the perturbations. 
It is shown that for a fixed wave period less than a pendulum day this energy has 
a maximum for a perturbation whose length is of comparable magnitude to the 
incident wavelength. Finally, the theory is applied to Kelvin waves propagating 
along the Californian coastline. Results obtained tend to confirm the suspicion 
that coastal irregularities are responsible for certain anomalies detected in tidal 
wave constituents by Munk, Snodgrass & Wimbush (1970). 

1. Introduction 
The generation of Kelvin waves appears to be mainly due to two mechanisms. 

One of these is atmospheric disturbance, and for a recent paper on this topic 
reference may be made to Thomson (1970). The other mechanism which is 
concerned here may be important physically, but appears to have received little 
attention in the literature; this is the generation of Kelvin waves a t  coastlines 
owing to the incidence of a plane wave system. Crease (1956) considers a plane 
wave system diffracted at  a sharp edge and investigates the Kelvin wave which 
is thus created. In the present model the flow boundaries are assumed to be 
nearly straight and the Kelvin wave arises solely as a result of the energy ex- 
tracted from the plane wave system by the boundary changes in coastline and 
depth, assumed here to be of small order E. The solution of the corresponding 
perturbation theory is fortunately rather simple and the results are thought to 
be of sufficient interest to justify a brief description. 
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The perturbation theory leads also to a solution of what is in effect the reverse 
problem, i.e. the dissipation of an incident Kelvin wave at  a coastline owing to 
boundary perturbations, and the propagation of the energy balance away from 
the coast in the form of cylindrical waves. This question has received some 
attention recently for the case when the boundary suffers an abrupt change in 
shape, see papers by Buchwald (1 968), Packham & Williams (1968) and Packham 
(1969), but appears to have been overlooked for a coastline in which the changes 
are much less severe. 

In  this case the present theory must be extended to second order, O ( E ~ ) ,  a 
situation which may be inferred a pr ior i  since the incident Kelvin wave which 
is O(1) near the coast dies out rapidly with distance from the coastline. In this 
region, therefore, the fluid disturbances are at most O(B),  yielding an energy 
propagation of O(e2) which can be accounted for by a change of O(@) in the 
transmitted Kelvin wave amplitude. The main object in this second problem is 
to reveal how the Kelvin wave reacts to small boundary perturbations placed 
in its path and to relate the lengths of the wave and the perturbations to the 
energy dissipated from the coastline. 

2. Small perturbation theory 
With the assumption of a time dependence of eiwt, the free-surface elevation 

C(x, y) in a rotating sea in the x, y plane satisfies the partial differential equation 

where suffices involving variables denote differentiation with respect to these 
variables. Here f is the Coriolis parameter, g is the acceleration due to gravity 
and H ( x )  is the depth of the sea, assumed to be a function of x only. 

It may be shown that along the coastline represented by y = L(x)  the con- 
dition of no normal flow is 

Cx+i-Cg=L,(i;cx-Cg). w 
f 

This boundary is assumed to be almost straight, lying approximately along the 
x axis, The rotating sea is also assumed to be of nearly uniform depth d, occupying 
a region y > 0 in the northern hemisphere for which f > 0. Wave motion affected 
by rotation in such a sea is typified by a horizontal length scale (gd)$ / f ,  while 
the relevant vertical depth scale may be taken as the depth d. The variables 
x, y, %, L and H may therefore be conveniently replaced by their scaled counter- 
parts x(gd)*/f ,  y(gd)i/f, C(gd)*/f, L(gd)* / f  and d H .  The above equations then take 
the non-dimensional form 

k2C+HV2<+HxD’C = 0 for y 2 L(x), ( 2 . 3 ~ )  

0% = LxD‘C on y = L(x), ( 2 . 3 b )  

where c = o/f and k2 = c2 - 1, using the notation 
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Small perturbations to both coastline and depth given by 
L(x) = E Z ( X ) ,  H (x )  = 1 + E ~ ( z ) ,  (2.4a, b)  

where e is a small quantity, are now assumed. In  the analysis which follows, I(%), 
h(x) and their derivatives will be taken to be O( 1) in magnitude. This is equivalent 
to assuming that both perturbations have lengths comparable in magnitude to 
the horizontal scale distance (gd)B/f, and precludes from the discussion perturba- 
tions of much smaller length. 

By assuming a free-surface elevation of the form 

y = yo+ey l+ey2+  ... o ( E 3 )  (2.5) 

and using (2.4), (2.3) may be expanded in successive powers of e to obtain a series 
of boundary-value problems : 
to O(1) 

to O(E) 

to O(E2) 

V2co+kzyo = 0 for y 2 0, (2.6a) 
D Q =  0 on y =  0;  (2.6b) 

V2Cl + h2C1 = - hV2yo - hx D’& for ZJ 0, ( 2 . 7 ~ )  

DCl = ZxD’yo- 1Dyo2/ on y = 0;  (2.7b) 

V2y2 + k2C2 = - hV2y1 - hx Dryl for y 2 0, ( 2 . 8 ~ )  

DC2 = ZxD’~l-ZD~12/+ZZxD’~02/-~12D~oyv on y = 0. (2.8b) 

In  addition it is necessary to satisfy the radiation condition at infinity. It is 
therefore assumed that (a) Im (a) > 0 and ( b )  yl and y2 are bounded as y -+ 00. 

Eventually it is intended to let Im (a) -+ 0 in order to obtain the steady wave 
motion desired. 

The primary flow yo is taken to be a solution of (2.6), that is 
an + im e--iny+einv 

where m2+ n2 = k2. If m and n are real then k2 > 0,  and if Im  (c) is put equal to  
zero, as will be done eventually, (2.9) represents a system of plane waves of unit 
amplitude incident on and reflected by the straight boundary y = 0 bounding 
a uniform sea. The direction of propagation of the incident waves makes an angle 
6 with the normal to the coast, where 

6’ is shown in figure 1 below. The system reduces at y = 0 to the coastal wave 
tan 6’ = mln. (2.10) 

(2.11) 

In  addition to giving plane waves the primary flow (2.9) may be used to 
represent an incident Kelvin wave of unit amplitude travelling along the 
boundary in the positive x direction and given by 

provided it is assumed that rn = cr, n = - i and Im (c) = 0. In  this case there is 
no restriction on the sign of k2. 

7 (2.12) y - eiux--Y 
0 -  

18-2 
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3. Solution by using Fourier transforms 

operator a and the transforms being denoted by an overbar, i.e. 
Fourier transforms are now introduced, the variable x being replaced with 

with inverse 

( 3 . 1 ~ )  

( 3 . l b )  

For convergence of the Fourier transform it is assumed here that 5 = O(lxlP), 
p < 0, as 1x1 -+ CQ, and similar conditions are imposed on all other transformed 
quantities. 

3.1. First-order theory : O(s) 

Inserting the primary flow (2 .9 )  into the h t -order  problem (2.7) and then 
transforming gives 

( 3 . 2 ~ )  

where u2 = a2- k2, with the boundary condition 
iadcl/dy - iacl = Bl(a) on y = 0. (3 .2b )  

In  (3.2) 8, = in, 8, = -in, 

(3 .3a )  

2i(a2- 1)n 
Bl(a) = {ma + a 2 1  I(m + a). an - im 

(3 .3b)  

(3 .3c)  

The solution of the problem posed by (3 .2 ) ,  such that lcll is bounded as y --f 00, 

is straightforward and may be shown directly to be 

3.2. Second-order theory: O(s2) 

In  this case Fourier transforms may be applied to (2.8), and using the product 
rule on those terms involving cl and substituting directly for those terms in &, 
using (2.9) yields 

for y 0 ( 3 . 5 ~ )  and 

(3 .5b)  
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By substituting for [,(p,y) using (3 .4 ) ,  (3 .5)  may be rewritten in the form 

( 3 . 6 ~ )  

and 

(3 .6b)  
In (3 .6 )  8, = in, 8, = -in as before, 8, = b = (pa-k2)& and 

The solution of (3 .6)  may be obtained in an identical manner to that of (3.2) 
above, the only difference being the extra integration with respect to p. Thus it 
follows that 

Finally, (3 .4)  and (3 .8)  may be used to determine &(x, y) and C2(x,y) on applica- 
tion of the inversion integral (3.1 b ) .  

3.3. The Kelvin wave 
The particular interest in this paper is to obtain the Kelvin wave amplitude a8 
2 -+ 00. Inspection of (3 .4)  and (3 .8)  reveals that this arises from the simple 
pole cra + a = o-(a2 - u2+ l )&  + a = 0 in the a plane, i.e. at a = - g. The residue 
at this pole is obtained by assuming Im (u) > 0 initially in order to satisfy the 
radiation condition a t  infinity. Im(cr) is then allowed to tend to zero to yield 
the required uniformly periodic flow. 

For the case of incident plane waves (2 .9) ,  it can be shown that as x + co 
the first-order Kelvin wave component in the coastal wave record arising from 
(3 .4)  is 

I n  addition to this Kelvin wave there will be a fist-order reflected wave also 
with a non-zero amplitude at infinity. This is a direct result of the assumption 
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of a two-dimensional depth perturbation, and stems from the simple pole below 
the real a axis at a = - m = - (cr2 - 1 - n2)4, where Im (m) > 0,  for n real and 
Im (a) > 0. Evaluating the residue for this contribution yields 

a x ,  Y) = - (ik2/2m) m) .Q@, Y), (3.10) 

where c,, is the primary flow (2.9). The result (3.10) reveals that the theory be- 
comes singular a t  m = 0. This corresponds by (2.10) to 0 = 0,  the case when the 
incident wave crests are parallel to the coast and are moving along the line of 
the depth changes. 

Finally, when the incident wave is the Kelvin wave (2.12), the results (3.4) 
and (3.8) may be simplified considerably by substituting m = cr, n = - i. After 
calculation of the residues at the pole a = -a, (2.5) yields the transmitted 
Kelvin wave as x -+ co in the form 

c(x,y) = (1 -~iu-fE(o)e-B~2~(0)2s2+As2) e i ~ ~ - ~ + o ( e 3 ) .  (3.11) 

It may be noted that the first-order term here is not equal to that obtained 
from (3.9) by putting m = cr, n = -i. This is because the poles a t  a: = -a and 
a = - m now coincide. The difference is in fact supplied by the term on the right- 
hand side of (3.10), which reduces to a Kelvin wave in these circumstances. 

The terms in (3.11) of O(s2) involve an integration with respect to p along the 
real axis, excluding a simple pole at  /3 = - a and also the branch points in the 
case (r > 1 since these then occur a t  p = k on the real axis. The term in fEz(0) 
arises directly from the pole at  p = - a, the rest of the integral being given by 
the term in A ,  which will be discussed in 8 4. 

4. Incident plane waves 
Here attention is confined to the result (3.9), some important properties of 

which may be conveniently illustrated by a particular example. Before doing 
this, however, it  is of interest to point out briefly some conditions under which 
no Kelvin waves are produced by incident plane waves of a given period. By 
replacing m - c by a in the integrand of (3.9) it may be deduced that such a state 
of affairs will occur for a combination of coastal and depth changes whose 
transforms I ( & )  and -fE(a) are related by 

It is also possible to reach a similar conclusion for the individual distributions 
of Z(x) or h(x). To illustrate this consider two equal coastal perturbations I, 
a distance 2x0 apart and symmetrically placed with respect to the origin, i.e. 
take l ( x )  = Z,(x-x,)+Z,(x+xo), yielding i(a) = S~,(a)cosax,. By using (3.9) and 
replacing a by m - cr it  follows that no Kelvin wave is possible for periods given 
by integral values of r for which 

(m-cT)xo = & ( 2 r + l ) r  (4.2) 
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and which are a t  the same time consistent with acute angles of incidence 8, as 
defined by (2.10). If on the other hand the periods are such that 

(4.3) (m - cr) xo = m, 

the effect of the pair of perturbations is directly additive. 

example it is assumed that 
Further superposition of such distributions can lead to resonance. For an 

Z, (X-  (28+ 1) 50) + Z,(X:+ (2s + 1) z-0) 

(28+ 1) 44  = x 9 
s=1 

(4.4) 

limiting choice to a perturbation which tends to zero as 1x1 -f 00. Thus it follows 
that 

This again yields no Kelvin wave if xo is given by (4.2), and is finite for all x,, 
except those given by (4.3), thus corresponding to a condition of resonance. 

Consider now a particular example in some detail and assume that 
Z(x)/Z(O) = h(x)/h(O) = e-Ylzl, 

i(a)/Z(O) = E(a)/h(O) = 2y/(y2+a2). 

(4-6) 

(4.7) 

where Z(O), h(0) and y are constants. Transforming then yields 

Choosing the coastal wave amplitude (2.11) as a standard the ratio of Kelvin 
wave amplitude to that of the coastal wave by (3.9) becomes 

where 7 = 1/a is the wave period measured in pendulum days. In 
dimensional quantities the angle of incidence (2.10) is given by 

tan 6 = 7m( I - (1 + m2) 7”)-9. 

(4.8) 

terms of non- 

(4.9) 

By restricting attention for the moment to the first term in (4.8) it becomes 
evident that the maximum amplitude ratio is sZ(O), when 1 - m ~  = 77. By 
eliminating rn it follows that the maximum amplitude ratio corresponds to an 
angle of incidence 6, such that 

tan 8, = (1 -7y) [ 2 7 7 - ~ ~ ( 1 + y ~ ) ] - k  (4.10) 

Figure 1 shows the variation of 8, with 7, the period measured in pendulum 
days, for y = 0.5, 0.8, 1, 2 and 4. For the majority of 7 and y values it may be 
seen that 8, > 0. However, as y increases, which is equivalent to the coastal 
perturbations I(%) becoming more abrupt, 8, becomes smaller and may even 
become negative for y > 1 as 7 increases. The conditions imposed in the present 
theory are satisfied provided that the physical length of the profile is not small 
compared withf/(gd)t. If the scaled length of the profile (4.6) is taken for con- 
venience as 4/y, i.e. twice the length in the x direction for the profile to reduce 
from its maximum by a factor of l/e2 ( = 0.135), then the theory is valid provided 
4/y 2 O(1). 
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FIGURE 1. Graph of Om, the angle of incidence of plane waves defined by (4.10) for the 
maximum ratio of Kelvin wave amplitude to coastal wave amplitude. 

In  contrast to this situation, when the perturbation is one of depth h(x) alone, 
inspection of the second term in (4.8) shows that no Kelvin wave is possible if 
m = 0. This corresponds by (4.6) to an incident angle B = 0 and the theory is 
singular, as indicated in $3.  In  fact it  can be shown, although the details are 
omitted here, that the largest values of the amplitude ratio tend to occur mostly 
at  large incident angles, either positive or negative. From (2.10) and (2.11) it  
may be deduced that the coastal wave amplitude itself is zero at  0 = 5 $a, but 
rises rapidly for incidences away from the extremes. Thus it may be concluded 
that the depth changes are having greatest effect in producing Kelvin waves 
for wave systems whose crests are almost parallel, although not exactly so, to 
the line of the depth changes. Although this tendency stems from a particular 
case it is suspected from the form of (3.9) that it is a general result for two- 
dimensional depth perturbations in the presence of a coastline. 

5. Incident Kelvin waves 
5.1. Amplitude changes at large distance 

Consider now the case when the incident wave is a Kelvin wave given by (2.12). 
It may be seen from (3.11) that although the phase of the transmitted wave is 
altered to O(e) the amplitude reduces simply to 1+Re(A)s2+O(e3), the term 
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in h(0) cancelling out, and Im(A) not contributing to this order of accuracy. 
Determination of that part of the residue containing Re(A) reveals that it is 
non-zero only in the case cr > 1, as a result of integrating along the real f i  axis 
between the branch points p = f k .  If 1 > u, these branch points are off the 
real axis and no contribution of this type arises. 

For u > 1 the contribution is conveniently expressed in terms of the sym- 
metrical components I ,  and h, and the unsymmetrical components I ,  and h, of 
the perturbations defined by 

I (  k x) = U x )  f l f f l (x) ,  

h( & 4 = h,i,(x) It h,(x). 

By putting 

and 

with similar expressions for hs(a) and h,(a), it may be shown that 

(5.1) 

Since the energy is directly associated with the square of the amplitude of the 
Kelvin wave the present results verify to the accuracy taken that no energy is 
lost from the boundary in the case 1 > u by the presence of the perturbations. 
If a > 1, however, since Re (A) < 0 there must always be some energy dissipa- 
tion of this type except in one circumstance. This arises, it is interesting to 
note, when the perturbations Z(x) and h(x) are again related by (4.1). Such 
Combinations of coastline and depth perturbations therefore have for a given 
wave period the dual property that they neither extract energy from an incident 
plane wave system to form a Kelvin boundary wave, nor do they divert energy 
from an incident Kelvin wave and propagate it to infinity.? 

As a convenient example the symmetric profile (4 .6 )  is chosen to represent 
a coastal perturbation I (x) .  A similar depth change is expected to lead more or 
less to the same results and consideration of this is therefore omitted. The ratio 
of the energy dissipated from the boundary to the energy of the incident wave is 

12Re(A)s21 = 4s2Z2(0 )J (7 , y ) ,  ( 5 . 2 )  

J (7 ,  y )  is plotted against y in figure 2 for wave periods r = 0.2, 0.35 and 0.5. 
For a given value of r ,  corresponding to a Kelvin wave of length 27~7, it  may be 

t A similar result in fact applies when the boundary changes are more extreme. Packham 
& Williams (1968) show that Kelvin waves, even for d > 1, are refracted perfectly with no 
loss in energy at sharp angled bends of angle n/(2r + l) ,  where r is any positive integer. It is 
observed here that these angles are precisely those which will allow perfect reflexion by the 
boundaries of plane waves moving parallel to the line bisecting the vertex. 
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FIGURE 2. Graph of J(7,y) ,  defined by (6.3), giving the energy dissipated from the Kelvin 

boundary wave owing to a coastal perturbation Z(x). 

seen that there is a particular coastal perturbation which will give rise to maxi- 
mum energy propagation away from the coast. This maximum occurs in each 
case when yr -h 1.2, corresponding by the definition above to a coastal perturba- 
tion length 4/y fi 4r/1*2 2 nr, i.e. approximately half the Kelvin wavelength. 
If y is small, corresponding to a flat coastline, the Kelvin wave is transmitted 
with little change, much as would be expected. What is perhaps less expected, 
however, is that the same tendency is predicted for coastlines which are abrupt 
for y large. Of course if y is too large, corresponding to a very abrupt perturba- 
tion, one of the basic assumptions of the present theory is violated, However, as 
indicated previously the theory is valid provided 4/y O( l), and in consequence 
the results illustrated in figure 2 are reasonably acceptable for the range of y taken. 

As r decreases, the propagation of energy away from a given boundary in- 
creases, in accordance with other papers on this topic mentioned in $ 1 .  The 
value of y for the maximum propagation then also increases as would be 
reasonably expected, since the boundary will have to be shorter to have the 
greatest effect on the waves of smaller T and smaller wavelength. 

5.2. Local amplitude and phases changes 
Munk et al. (1970)t give details of amplitude and phase variations in diurnal 
(g = 1) and semi-diurnal (c = 1.97) tidal constituents detected along the 
Californian coast. They suggest that these anomalies may be attributable to 
coastal irregularities. The amplitude of the waves detected were found to de- 
crease exponentially with distance away from the coastline, as of course do the 
Kelvin waves of the present treatment. It is therefore relevant to inquire here 
if similar variations can be predicted for a Kelvin wave moving in the same 
circumstances. 

t The author is indebted to a referee for drawing his attention to this paper. 
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To obtain the local changes undergone by an incident Kelvin wave as it 
travels along an irregular coastline it is sufficient to consider only the first-order 
theory. Confining attention to coastal boundary changes only, (3.4) yields on 
y = 0, after putting m = 0, n = -i, that for a Kelvin wave 

Together with (2.5), (2.12) and (3 . lb) ,  this yields the coastal wave elevation 

[(x, 0, t )  = ebz-20t {l + 01, (5.5) 

inserting the time dependence e c i W t .  Now 

J - W  

and on substituting in (5.6) it is possible to justify a change in the order of 
integration. In  so doing the integration of a along the real axis is replaced by in- 
tegration along cuts parallel to the imaginary a axis which exclude the branch 
points a = 2 ( g 2 -  l)* (dealing only with the case of immediate interest, cr 2 1). 

Thus it can be shown that 

D = 1 Z(xo) G(x - xo) dxo, (5.8) 
--m 

where 

the upper sign applying if xo - x > 0 and the lower sign if x,, - x < 0. On separa- 
tion into real and imaginary parts (5.9) can be easily evaluated numerically. It 
then remains to determine D from (5.8) by a further integration once the par- 
ticular coastline is specified. 

The section of coastline under consideration is illustrated in figure 3(e). Its 
shape includes a number of small-scale irregularities falling outside the scope 
of the linearized theory. Such irregularities are in fact considered by Miles & 
Munk (1961) and Buchwald (1971). For the sake of comparison it is assumed here 
that the average effect of these small-scale changes can be ignored, and that the 
changes which have a large lengthwise scale can be dealt with by replacing the 
actual coastline with a smoothed outline, also shown in figure 3 (c). The perturba- 
tion Z(x) is taken to be the departure from the straight line (or great circle) 
coinciding approximately with the 2000 km of reasonably straight Canadian 
coastline which occurs just north of the coastal section under consideration. The 
depth a t  great distances from the coast is d = 3.4 km. The representative length 
along the coast is taken to be (gd)*/f = 2600 km. 

The tidal amplitudes determined from observations along the Californian coast 
by Munk, Snodgrass & Wimbush are shown in figure 3 (a )  and are compared in 
the cases LT = 1, 1.97 with values calculated from (5.5) and (5.8). The present 
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FIGURE 3. (a) Comparison of the amplitude changes for the Kelvin waves and the tidal 
constituents. ---, 0, = 1; - , x , u = 1.97. (a) Phase time delaysrelative to the datum 
line for a Kelvin wave propagating northwards with a velocity of 685 km/h. - - -, diurnal 
wave, u = 1; - , semi-diurnal wave, u = 1.97. Phase time delays, made to coincide at 
La Jolla, of the tidal constituents obtained from observation: 0, u = 1; x ,  u = 1.97. 
(c) Section of Californian coastline under consideration. The smoothed shape Z(z) (taking 
Z(z) > 0) is also shown relative to the z axis datum line. 
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theory predicts only relative changes in amplitude and therefore in order to 
effect a comparison the detected values of amplitude a t  La Jolla have been 
incorporated. The corresponding results for phase measured in terms of time 
delay are shown in figure 3 (b ) .  These are superimposed on the time phase change 
of the straight line datum chosen assuming the Kelvin wave to be moving north- 
wards with speed (gd)* = 685 kmlh. 

The calculation shows that north of La Jolla results are not sensitive to 
moderate changes in the datum line. The phase times predicted at La Jolla are 
- 12.5min for cr = 1 and - 16min for cr = 1.97. Since Munk, Snodgrass & 
Wimbush give their results in terms of phase delays relative to those at La Jolla 
this is the sense in which their results are shown for comparison in figure 3. 
Discounting small-scale discrepances, it would appear that the overall trends 
are similar for the detected anomalies and those which have been calculated by 
the present theory for a Kelvin wave. In  particular the present method certainly 
yields the right order of phase time delay at Humbolt Bay, i.e. 20min for cr = 1 
and 50min for g = 1-97. In  addition it shows that the amplitude varies much 
more for the CT = 1.97 case than for the CT = 1 diurnal wave. 

The discrepancies south of La Jolla are perhaps not unexpected in view of the 
protruding coastline in this region and the proximity of the Southern Californian 
Cape. However, the differences just north of Humbolt Bay are more surprising. 
It is suspected these are due to the occurrence of the Mendicino fault line, which 
leaves the coast near this position. However, using the linearized theory starting 
from (3.4), and allowing for a suitable depth decrease north of Cape Mendicino, 
revealed only gradual phase changes, more or less equivalent to a slower moving 
Kelvin wave propagating with the appropriate reduced velocity. 

6. Conclusions 
A straight coast bounding a sea of constant depth reflects perfectly a system of 

incident plane waves. The presence of a small perturbation, for example, a coastal 
change AL or a depth change AH, leads in general to some of the incident energy 
being extracted and used to form Kelvin waves propagating along the boundary 
away from the disturbance. The ratio of the Kelvin wave amplitude so formed in 
each case to that of the incident wave is of O[ALf/(gd)*] and O(AH/d) re- 
spectively. This compares with the corresponding result for a sharp edge boundary 
(Crease 1956), for which the amplitude ratio is generally O(1). 

It is shown that the actual energy extracted from the incident wave system 
by a nearly straight coastline depends very much on the particular geometry. 
This is indicated by the complete cancellation of the Kelvin waves in some cases, 
while in others reinforcement takes place. However, it does appear that when a 
line of depth changes is present the largest Kelvin wave amplitudes usually form 
when the incident plane wave crests are nearly parallel to this line. 

In  the case when the incident wave has much less energy and is itself a Kelvin 
wave, the proportional amplitude changes at large distance along the coast are 
0[ALf/(gd)*la and O(AH/d)z for coastal and depth perturbations, respectively. 
This only occurs if cr > I when energy is diverted away from the boundary in the 
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form of cylindrical Poincare waves, the greatest effect being attained when 
a given perturbation has a characteristic length similar to that of the incident 
wave. For a particular period T ,  some combinations of coastal and depth per- 
turbations cause no Poincar6 waves to be set up. Such geometries have the 
interesting dual property of being unable to extract energy from incident plane 
waves of period r and form Kelvin waves. 

So far these conclusions apply only to changing conditions at  large distances 
from the perturbation. Locally the perturbations cause changes in the amplitude 
and phase of the wave experiencedat the coast even if no net change occurs at  large 
distances. It is shown that along the Californian coastline, provided irregularities 
of small lengthwise scale are ignored, an incident Kelvin wave will suffer changes 
in amplitude and phase similar to changes found in tidal wave constituents 
determined from observations. As the period of the incident wave r becomes 
smaller there would appear to be a tendency for amplitude and phase variations 
caused by a given coastline to increase. 
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